SESTSUIPSE

N 4o YY o V)

Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS

Pseudocode of Huffman’s algorithm

HUFFMAN (C)

1 n <« |C|

2 0 <« C

3 fori < 1ton—1

4 do allocate a new node z

5 left|z] <« x < EXTRACT-MIN(Q)

6 right[z] <« y <« EXTRACT-MIN(Q)

7 flz] < flx]+ fIy]

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) > Return the root of the tree.

Correctness of Huffman’s algorithm

* Let C be an alphabet in which each character ¢ € C has frequency f [c]. Let x
and y be two characters in C having the lowest frequencies. Then there
exists an optimal prefix code for C in which the codewords for x and y have
the same length and differ only in the last bit.

* Let C be a given alphabet with frequency f [c] defined for each character ¢
€ C. Let x and y be two characters in C with minimum frequency. Let C2 be
the alphabet C with characters x, y removed and (new) character z added,
so that C2 = C - {x, y} U {z}; define f for C2 as for C, except that f [z] = f [x] +

f[yﬂ]. Let T2 be any tree representing an optimal prefix code for the

alphabet C2. Then the tree T, obtained from T2 by replacing the leaf node

for z with an internal node having x and y as children, represents an
optimal prefix code for the alphabet C.

Correctness of Huffman’s algorithm

RG] PR VR K To oS o o f"'] olsl e

Amortized Analysis

* In an amortized analysis, the time required to perform a sequence of
data-structure operations is averaged over all the operations
performed.

 the average cost of an operation is small
* even though a single operation within the sequence might be expensive.

 Amortized analysis differs from average-case analysis in that
probability is not involved

* an amortized analysis guarantees the average performance of each operation
in the worst case

three most common techniques used in

amortized analysis.

e aggregate analysis
* the accounting method
* the potential method

2

:6)9—“3[-.’. *

Aol OS50 05 (oo oolaiwl o (gl (Sl o Jodod aisi8 50 culs cols s gl A e

.m.;SgSA.;ooLé.‘;w\ EYPVERT-IRN I (o9

Aggregate analysis

» we show that for all n, a sequence of n operations takes worst-case

time T (n) in total. In the worst case, the average cost, or amortized
cost, per operation is therefore T (n)/n.

* all operations have the same amortized cost.

The accounting method

* When there is more than one type of operation
* each type of operation may have a different amortized cost

* we assign differing charges to different operations, with some operations
charged more or less than they actually cost.

 The amount we charge an operation is called its amortized cost.

* When an operation’s amortized cost exceeds its actual cost, the difference
is assigned to specific objects in the data structure as prepaid credit.

* Credit can be used later on to help pay for operations whose amortized cost is less
than their actual cost.

The accounting method (2)

* This method is very different from aggregate analysis, in which all
operations have the same amortized cost

* The total credit stored in the data structure is the difference between
the total amortized cost and the total actual cost

* Must be greater than zero

* the total amortized cost of a sequence of operations must be an

upper bound on the total actual cost of the sequence -

E (1 Z § C;

=1 1=l

The potential method

* Is like the accounting method in that we determine the amortized cost of
each operation and may overcharge operations early on to compensate for
undercharges later

* maintains the credit as the “potential enerﬁy” of the data structure as a
whole instead of associating the credit with individual objects within the
data structure

* Foreachi=1, 2,...,n, welet c¢; be the actual cost of the ith operation

* D; be the data structure that results after applying the ith operation to
data structure D;_4.

* A potential function maps each data structure D; to a real number ®(D;),
* amortized cost ¢; = c; + ®(D;) - ®(D;_4).

11

The potential method (2)

 the total amortized cost of the n operations is

ZZ‘“ = i((',‘—F(D(D;)—(D(D,'_[))
=1 =1

— Z(.f_'_cD(D”)_(D(DU)-

=1

* require that ®(D;) > ®(D,) for all i,
e guarantee, as in the accounting method, that we pay in advance
* define (Dy,) to be 0 and then show that (D;) 2 0 for all i

.) 2 0 for all i) => the total amortized cost of a sequence of n
ClREMENT operations is an upper bound on the total actual cost

Examplel : stack

 Stack operations

PUSH(S, x) pushes object x onto stack S. O(1)
POP(S) pops the top of stack S and returns the popped object. O(1)

MULTIPOP(S, k) // pops several objects at once O(min(s,k))
while not STACK-EMPTY(S) and k =0
do POP(S)
k&< k-1

Examplel : stack

e aggregate analysis
* For any value of n, any sequence of n PUSH,POP, and MULTIPOP operations

takes a total of O(n) time. The average cost of an operation is O(n)/n = O(1).
* all three stack operations have an amortized cost of O(1).

* The accounting method
actual costs: amortized costs:

PUSH | . PUSH 2,
Pop) . Pop 0.

MULTIPOP min(k.s) . MuLTipOP 0.
14

Examplel : stack (The potential method)

 define the potential function on a stack to be the number of objects
in the stack

(b(D,) = 1)
d(D;)—D(Di_y) = (s4+1)—s5s = 1

ci+ P(D;j) —DP(D;i_y)

™
—.

15

Examplel : stack (The potential method 2)

* the amortized cost of the MULTIPOP operation is

—_—~

¢ci = ¢i+P(D;)—D(D;_)
- /__! . /_!
= 0.

* The amortized cost of each of the three operations is O(1)

Example2: a binary counter

a k-bit binary counter
e counts up from 0 by means of the single operation INCREMENT.

use an array A[0..k-1] of bits, where length[A] =k, as the counter.
* A binary number x that is stored in the counter has its lowest-order bit in A[0] and its highest-
order bit in A[k-1]
Initially, x =0, and thus A[i] =0 for i =0,1,...,k-1.

* To add 1 (modulo 2k) to the value in the counter, we use the following procedure.

INCREMENT(A)
i <0
while i < length[A] and A[i] =1
do A[i] €0
i <i+l
if i <length[A]
then A[i] €1

incrementing a binary counter

Total
cost

NN
OO0 00O0O0O00
OO0 000O0O01

™
00000010

QY

B

™ P

Nes

Counter
value

0

0

1
2
3
4
3
6
7

3
4
7

00000011

0000O0T1 070

000O0O0T1M01

000O0O01
00000

0

1

1
1

1

18

SCLe22URE]T
OO =0 =0 = O
o0 — OO0 — = O
o0 — — —H= O
||||||| -
SO oO8 —
oo o oo
S oo oo o
oo oo 0o
N O =l O

— p— p— p— p— p— p—

aggregate analysis

* The total number of flips in the sequence is

Llgn] 00 1

Llz] <Xy =

1 =() 1 =0

* The worst-case time for a sequence of n INCREMENT operations on
an initially zero counter is therefore O(n). The average cost of each
operation, and therefore the amortized cost per operation, is O(n)/n =
O(1).

The accounting method

e charge an amortized cost of 2 dollars to set a bitto 1

 When a bit is set, we use 1 dollar (out of the 2 dollars charged) to pay for the
actual setting of the bit, and we place the other dollar on the bit as credit to
be used later when we flip the bit back to 0.

 The number of 1’s in the counter is never negative, and thus the
amount of credit is always nonnegative

e for n INCREMENT operations, the total amortized cost is O(n), which
bounds the total actual cost.

The potential method

 define the potential of the counter after the ith INCREMENT
operation to be b; , the number of 1’s in the counter after the ith
operation

* The actual cost of the operation(the ith INCREMENT operation resets
L bitS)
e atmost t;+1
e If b;=0, b;_,=t;= k.
* If b;>0, then b;=b;_1 —t;+1

The potential method(2)

* In either case, b; £ b;_; —t; +1, and the potential difference is

O(D;) —P(Di—1)) < (bi-1—t;+1)—b;_;
= L —s

* The amortized cost is therefore

C; ¢i +®(D;) — ®(D;_y)
ti+ 1D+ —=1t)

B

IA I

22

analyze the counter even when it does not
start at zero

* There are initially by 1’s, and after n INCREMENT operations there are
b, 1’s, where 0 < by, b,, < k.

n
E =
1=1 =]
n n

E Ci

2n — b, + by .

¢ —®(D,) + D(Dy) .

n
!._

2 — /)H + /){)

| A

23

analyze the counter even when it does not
start at zero

* since by £k, as long as k = O(n), the total actual cost is O(n)

e if we execute at least n = (k) INCREMENT operations, the total actual
cost is O(n), no matter what initial value the counter contains

| A

n n
E C; E 2 — /)” + /)()

2n — b, + by .

